
©2024 Databricks Inc. — All rights reserved

Kumudini, Akshayaprakash

Uber
1

UBER’S BATCH
ANALYTICS EVOLUTION
FROM HIVE TO SPARK

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Hive @ Uber

• Motivation To Migrate

• Migration Strategy

• Hive to SparkSQL Translation

• Shadow Testing & Data validation

• Hive-Spark Disparity

• Results & Future Work

2

Agenda

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Batch Analytics @ Uber

Hive on Spark Spark

Hive ETL IngestionNotebooksSpark ETLInteractive

Compliance
Reporting

Financial
Reporting

Planning &
Forecasting

AI/ML
Platform

Fraud &
Risk

Analysis

Adtech
Analysis

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Hive @ Uber

Total ETLs

18K
Monthly Scheduled

Queries

5M
Monthly

Interactive Queries

150K
Yarn Usage

35%

Hive: 2.3
Spark: 2.4.3

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Hive @ Uber
Architecture

Workflow DAG

P1

P2 P3

CREATE TABLE T1 ….;
CREATE TEMPORARY TABLE TMP_1 …;
CREATE TEMPORARY TABLE TMP_2 …;

INSERT OVERWRITE T1 SELECT * FROM
TMP_1 JOIN TMP_2;

SparkSubmit

Heartbeat

Hive Payload

Poll Status
Yarn

HoS
Hive Proxy

Hive Proxy
● Rest proxy to run Hive queries

asynchronously
● Spark submit HoS job with the Payload
● Config Guardrails & Transformations
● Zero Downtime Hive Release

Hive on Spark Execution
● Serverless (without HS2) execution
● Executes SQL statements in the

payload
● Query planning within the Driver
● Heartbeat to the Hive Proxy

©2024 Databricks Inc. — All rights reserved

• Hive on Spark (HoS) has
inactive OSS development,
Obsolete!

• Spark3 has vibrant OSS
community

Active OSS development Better Performance Unified Batch Analytics

6

• Hive has static query
planning

• Adaptive Query Execution in
Spark3

• Compute & Cost Efficiency

• Single engine for all batch
analytics use cases

• Uber’s observability &
performance optimization
tools already integrated
well with Spark

Motivation to Migrate
Hive 2.3 to Spark 3.3.2

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Translate: Dynamic Translation of HiveQL to
SparkSQL

• Validate: Shadow Testing of generated SparkSQL

• Migrate: Migration of HiveQL to SparkSQL

• Automation for updating static HQLs.

• Collaboration with workflow owners to update
dynamically generated HQLs.

Step 1: Automated Migration Step 2: Source Code Update

7

Migration Strategy
2-Step Migration Process

7

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Automated Migration
Shadow Testing

Workflow DAG

P1

P2 P3

SparkSubmit

Heartbeat

Hive Payload

Poll Status
Yarn

HoS
Hive Proxy

Shadow
Testing

Framework
Spark Proxy

SparkSQL

SparkSubmit

Shadow Execution

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Automated Migration
Migration

Workflow DAG

P1

P2 P3
Heartbeat

Hive Payload

Poll Status
Yarn

Hive Proxy

Spark Proxy

SparkSQL

SparkSubmitSparkSQL
Payload

Translation

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Leveraged Coral’s framework
● Added support for Hive2.x grammar
● Removed dependency on Calcite’s RelNode

○ No query optimization
○ No semantic validation against HMS

● Added rules to support syntax like DDLs and unregistered UDFs.
● Added support for payload translation

Hive to SparkSQL Translation

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 11

Hive to SparkSQL Translation

SET hive.auto.convert.join=true;
SET hive.auto.convert.join.noconditionaltask=true;
SET hive.auto.convert.join.noconditionaltask.size=128000000;

SELECT
max(struct(trip_count, city_id)).col2 as city_id

FROM
trip_info;

SET spark.sql.autoBroadcastJoinThreshold=128000000;

SELECT
max(named_struct("col1", trip_count, "col2", city_id)).col2 as city_id

FROM
trip_info;

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Abstract Syntax Tree

Hive to SparkSQL Translation

TOK_FUNCTION

struct ‘SF’ 1

city_details

TOK_SELECT

Input Hive Query

SQLNode SparkSql compatible SQLNode

Output SparkSQL query

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Interception: HiveQL payload
interception

• Safe Translation: Replace
output/input datasets

• Execution: Serialized execution
of Spark queries as per the
original DAG

• Validation: Data and
performance validation against
production HiveQL execution

13

Shadow Testing
Framework

13

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 14

Shadow Testing
Safe Translation

CREATE TABLE IF NOT EXISTS db.table_1 LIKE
db.prod_table;

INSERT OVERWRITE TABLE db.table_1
SELECT * FROM db.prod_table;

INSERT OVERWRITE TABLE db.table_2
SELECT * FROM db.table_1;

CREATE TABLE IF NOT EXISTS
migration.db_table_1 LIKE db.prod_table;

INSERT OVERWRITE TABLE migration.db_table_1
SELECT * FROM db.prod_table;

CREATE TABLE IF NOT EXISTS migration.table_2
LIKE db.table_2;

INSERT OVERWRITE TABLE migration.db_table_2
SELECT * FROM migration.db_table_1

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Race conditions (Table or view not found)

Shadow Testing
Limitations

CREATE EXTERNAL TABLE source_table
LOCATION("hdfs://external-location");

INSERT OVERWRITE dest_table
SELECT * FROM source_table;

DROP TABLE source_table;

Shadow execution fails with
“Table or view not found”
when it tries to read from

source_table!

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Race conditions (Table or view not found)
○ Requires multiple runs via Shadow testing framework

● Load data queries
○ File is moved from original location to table/partition location, shadow execution fails with

FileNotFoundException
○ Solution: Copied file to a temporary location in Hive for all load data queries

Shadow Testing
Challenges

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Race conditions (Table or view not found)
○ Requires multiple runs via Shadow testing framework

● Load data queries
○ File is moved from original location to table/partition location, shadow execution fails with

FileNotFoundException
○ Solution: Copied file to a temporary location in Hive for all load data queries

● Schema mismatch
○ DDL (CREATE TABLE IF NOT EXISTS) in the source code not uptodate
○ Shadow dataset is created with an outdated schema
○ Solution: Identify such tables from failure logs and configure the correct schema in shadow

testing framework

Shadow Testing
Challenges

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Data Validation

Match row
counts

Sample 10%
of the rows
from both
datasets

Compute row
checksums

Compare
checksums

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

Data Validation
Challenges

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

● Stringified JSON
○ Custom UDF to create ordered json with precision loss while sampling rows

Data Validation
Challenges

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

● Stringified JSON
○ Custom UDF to create ordered json with precision loss while sampling rows

● Non-deterministic functions like row_number, rand, collect_list, collect_set,
current_timestamp
○ Identify and exclude the columns from data validation

Data Validation
Challenges

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

● Stringified JSON
○ Custom UDF to create ordered json with precision loss while sampling rows

● Non-deterministic functions like row_number, rand, collect_list, collect_set,
current_timestamp
○ Identify and exclude the columns from data validation

● Frequently updated datasets/Circular dependencies
○ Snapshot input datasets, run both Hive and SparkSQL payloads on snapshotted datasets

Data Validation
Challenges

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 23

Bridging the Gap
Between
Hive & Spark

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Hive-Spark Disparity
Execution Failures

Problems Solutions

DDLs unsupported in SparkSQL:
● ALTER TABLE DROP PARTITION(datestr< ‘2024-

04-01’)
● ALTER TABLE CLUSTERED BY

HiveDriver support in SparkSQLRunner

Hive Built-in functions’ explicit registration required in
Spark

Implicit Hive built-in discovery and registration added
in Spark. Discovery order: Spark Built-in > Hive Built-in
> UDFs

Group by on non-orderable data types (maps/structs) Ported SPARK-34819

Out of memory errors ● Reduce target partition size
● Retry with increased executor memory

https://issues.apache.org/jira/browse/SPARK-34819

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Hive-Spark Disparity
Data validation Failures
Problem Hive Spark Solution

Boolean <> String Conversion

true => “TRUE”
false => “FALSE”
“” => false
“any_string” => true

true => “true”
false => “false”
“false” => false
“true” => true

Introduced behaviour on par
with Hive in Spark backed by a
config

Timestamp <> BigInt/Double
Conversion/Coercion

cast(1714542982 as
timestamp) => 1970-01-
20 20:15:42.982

cast(1714542982 as
timestamp) => 2024-
05-01 11:26:22

Introduced behaviour on par
with Hive in Spark backed by a
config

Partition Schema vs Parquet
Schema Preference

Partition schema >
Parquet Schema

Parquet schema >
Partition Schema

Identified and excluded these
columns from data validation.

Skip header in CSV tables
Respects
“skip.header.line.count“ in
table properties

-

Modified HadoopTableReader
to respect
“skip.header.line.count” while
creating RDD

Difference in behaviour of
built-in functions

regexp_like('x', null) =>
false

regexp_like('x', null)
=>null

Replace with Hive built-in in
translation

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● BroadcastNestedLoopJoin
○ NOT IN vs NOT EXISTS
○ Solution: Required query rewrites

● Merge ORC files
○ Merging ORC files is a metadata operation in Hive and hence very efficient
○ Not solved as ORC is deprecated at Uber in favor of Parquet

● Stats Autogather
○ Spark doesn’t compute and populate stats usable by Hive
○ Downstream Hive workflows are degraded because of non-availability of stats
○ Solution: Started computing and updating Hive usable stats in Spark

Hive-Spark Disparity
Performance Gotchas

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Too many small files created by Spark causing namespace quota issues & increased
HDFS directory listing latency

• Hive runs a conditional stage to merge files based on the following configs:
• SET hive.merge.sparkfiles = true
• SET hive.merge.smallfiles.avgsize = 128000000
• SET hive.merge.size.per.task = 128000000

Problem

27

Hive-Spark Disparity
Handling small output files

27

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Hive-Spark Disparity
Handling small output files

CreateDataSourceTableAsSelectCommand `default`.`table1`, ErrorIfExists, [col1, col2]

+- RebalancePartitions 200, false

+- Project [col1#20, col2#21]

+- SubqueryAlias spark_catalog.default.tmp

+- Relation default.tmp[col1#20,col2#21] parquet

CreateDataSourceTableAsSelectCommand `default`.`table1`, ErrorIfExists, [col1, col2]

+- Project [col1#20, col2#21]

+- SubqueryAlias spark_catalog.default.tmp

+- Relation default.tmp[col1#20,col2#21] parquet

● Added Rebalance in the logical
plan of SparkSQL write queries by
default before .

● Wrapped DataWritingCommand’s
child plan with Rebalance

.

Solution Original Plan

Modified Plan

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Hive-Spark Disparity
Handling small output files

● Added Rebalance in the logical
plan of SparkSQL write queries by
default before .

● Wrapped DataWritingCommand’s
child plan with Rebalance

● Tweaked AQE rules
CoalesceShufflePartitions and
OptimizeSkewInRebalancePartitio
ns to coalesce/split partitions
based on the file target size for
rebalance instead of
AdvisoryPartitionSizeInBytes.

.

Mapper Task 1

P1 P2

Mapper Task 2

P1 P2

Mapper Task 3

P1 P2

Reducer 1
P1

Reducer 2
P1

Reducer 3

Skewed partition P1 split by OptimizeSkewInRebalancePartitions

Solution

P2

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Hive and Spark use different hashing
algorithms for bucketing

• Spark supports writing both HiveHash
and MurmurHash while writing to
bucketed tables but ends up creating
too many files (#tasks * #buckets)
while using HiveHash

• Presto doesn’t recognize Spark
buckets

Problem

30

Hive-Spark Disparity
Bucketed Tables

30

Task 1 Task 2 Task 3

B1 B2 B1 B2 B1 B2

Data distributed by
MurmurHash
among tasks

Data redistributed
by HiveHash

among bucket files

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Hive and Spark use different hashing
algorithms for bucketing

• Spark supports writing both HiveHash
and MurmurHash while writing to
bucketed tables but ends up creating
too many files (#tasks * #buckets)
while using HiveHash

• Presto doesn’t recognize Spark
buckets

Problem Solution

31

• Decided to stick to HiveHash for
bucketed tables as majority read use
cases were in Presto.

• Added support for HiveHash in
Rebalance to reduce the number of
files.

• TBD: Extend HiveHash support to all
shuffle stages for bucket table reads.

Hive-Spark Disparity
Bucketed Tables

31

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Results

Interactive
Workloads Migrated

100%
ETL Workflows

Migrated

80%
Monthly Queries

Migrated

4M
Reduction in

Runtime & Cos t

50%

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• JDBC/ODBC access for SparkSQL

• Fast fail on semantic issues for SQL in BI tools

• Optimize compression while shuffling data before write

• Atomic updates to prevent FileNotFoundException in case of concurrent write
and reads

33

Future Work

Thank You!

	UBER’S BATCH ANALYTICS EVOLUTION FROM HIVE TO SPARK
	Agenda
	Batch Analytics @ Uber
	Hive @ Uber
	Hive @ Uber
	Motivation to Migrate
	Migration Strategy
	Automated Migration
	Automated Migration
	Hive to SparkSQL Translation
	Hive to SparkSQL Translation
	Hive to SparkSQL Translation
	 Shadow Testing
	Shadow Testing
	Shadow Testing
	Shadow Testing
	Shadow Testing
	Data Validation
	Data Validation
	Data Validation
	Data Validation
	Data Validation
	Bridging the Gap Between Hive & Spark
	Hive-Spark Disparity
	Hive-Spark Disparity
	Hive-Spark Disparity
	Hive-Spark Disparity
	Hive-Spark Disparity
	Hive-Spark Disparity
	Hive-Spark Disparity
	Hive-Spark Disparity
	Results
	Future Work
	Slide Number 34

