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ANALYTICS EVOLUTION 
FROM HIVE TO SPARK
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• Hive @ Uber

• Motivation To Migrate

• Migration Strategy

• Hive to SparkSQL Translation

• Shadow Testing & Data validation

• Hive-Spark Disparity

• Results & Future Work
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Batch Analytics @ Uber

Hive on Spark Spark

Hive ETL IngestionNotebooksSpark ETLInteractive

Compliance 
Reporting

Financial 
Reporting

Planning & 
Forecasting

AI/ML 
Platform

Fraud & 
Risk 

Analysis

Adtech 
Analysis
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Hive @ Uber

Total ETLs

18K
Monthly Scheduled 

Queries

5M
Monthly

Interactive Queries

150K
Yarn Usage

35%

Hive: 2.3
Spark: 2.4.3
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Hive @ Uber
Architecture

Workflow DAG

P1

P2 P3

CREATE TABLE T1 ….;
CREATE TEMPORARY TABLE TMP_1 …;
CREATE TEMPORARY TABLE TMP_2 …;

INSERT OVERWRITE T1 SELECT * FROM 
TMP_1 JOIN TMP_2;

SparkSubmit

Heartbeat

Hive Payload

Poll Status
Yarn

HoS
Hive Proxy

Hive Proxy
● Rest proxy to run Hive queries 

asynchronously
● Spark submit HoS job with the Payload
● Config Guardrails & Transformations
● Zero Downtime Hive Release

Hive on Spark Execution
● Serverless (without HS2) execution
● Executes SQL statements in the 

payload
● Query planning within the Driver
● Heartbeat to the Hive Proxy
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• Hive on Spark (HoS)  has 
inactive OSS development, 
Obsolete!

• Spark3 has vibrant OSS 
community

Active OSS development Better Performance Unified Batch Analytics

6

• Hive has static query 
planning

• Adaptive Query Execution in 
Spark3

• Compute & Cost Efficiency

• Single engine for all batch 
analytics use cases

• Uber’s observability & 
performance optimization 
tools already integrated 
well with Spark

Motivation to Migrate
Hive 2.3 to Spark 3.3.2
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• Translate: Dynamic Translation of HiveQL to 
SparkSQL

• Validate: Shadow Testing of generated SparkSQL

• Migrate: Migration of HiveQL to SparkSQL

• Automation for updating static HQLs.

• Collaboration with workflow owners to update 
dynamically generated HQLs.

Step 1: Automated Migration Step 2: Source Code Update

7

Migration Strategy
2-Step Migration Process

7
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Automated Migration
Shadow Testing

Workflow DAG

P1

P2 P3

SparkSubmit

Heartbeat

Hive Payload

Poll Status
Yarn

HoS
Hive Proxy

Shadow
Testing

Framework
Spark Proxy

SparkSQL

SparkSubmit

Shadow Execution
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Automated Migration
Migration

Workflow DAG

P1

P2 P3
Heartbeat

Hive Payload

Poll Status
Yarn

Hive Proxy

Spark Proxy

SparkSQL

SparkSubmitSparkSQL
Payload

Translation
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● Leveraged Coral’s framework
● Added support for Hive2.x grammar
● Removed dependency on Calcite’s RelNode 

○ No query optimization
○ No semantic validation against HMS

● Added rules to support syntax like DDLs and unregistered UDFs.
● Added support for payload translation

Hive to SparkSQL Translation
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Hive to SparkSQL Translation

SET hive.auto.convert.join=true; 
SET hive.auto.convert.join.noconditionaltask=true;
SET hive.auto.convert.join.noconditionaltask.size=128000000;

SELECT
max(struct(trip_count, city_id)).col2 as city_id

FROM
trip_info;

SET spark.sql.autoBroadcastJoinThreshold=128000000; 

SELECT
max(named_struct("col1", trip_count, "col2", city_id)).col2 as city_id

FROM
trip_info;
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Abstract Syntax Tree

Hive to SparkSQL Translation

TOK_FUNCTION

struct ‘SF’ 1

city_details

TOK_SELECT

Input Hive Query

SQLNode SparkSql compatible SQLNode

Output SparkSQL query
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• Interception: HiveQL payload 
interception

• Safe Translation: Replace 
output/input datasets

• Execution: Serialized execution 
of Spark queries as per the 
original DAG

• Validation: Data and 
performance validation against 
production HiveQL execution

13

Shadow Testing
Framework

13
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Shadow Testing
Safe Translation

CREATE TABLE IF NOT EXISTS db.table_1 LIKE
db.prod_table;

INSERT OVERWRITE TABLE db.table_1
SELECT * FROM db.prod_table;

INSERT OVERWRITE TABLE db.table_2
SELECT * FROM db.table_1;

CREATE TABLE IF NOT EXISTS
migration.db_table_1 LIKE db.prod_table;

INSERT OVERWRITE TABLE migration.db_table_1
SELECT * FROM db.prod_table;

CREATE TABLE IF NOT EXISTS migration.table_2 
LIKE db.table_2;

INSERT OVERWRITE TABLE migration.db_table_2
SELECT * FROM migration.db_table_1
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● Race conditions (Table or view not found)

Shadow Testing
Limitations

CREATE EXTERNAL TABLE source_table  
LOCATION("hdfs://external-location");

INSERT OVERWRITE dest_table
SELECT * FROM source_table;

DROP TABLE source_table;

Shadow execution fails with
“Table or view not found” 
when it tries to read from 

source_table!
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● Race conditions (Table or view not found)
○ Requires multiple runs via Shadow testing framework

● Load data queries
○ File is moved from original location to table/partition location, shadow execution fails with 

FileNotFoundException
○ Solution: Copied file to a temporary location in Hive for all load data queries

Shadow Testing
Challenges
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● Race conditions (Table or view not found)
○ Requires multiple runs via Shadow testing framework

● Load data queries
○ File is moved from original location to table/partition location, shadow execution fails with 

FileNotFoundException
○ Solution: Copied file to a temporary location in Hive for all load data queries

● Schema mismatch
○ DDL (CREATE TABLE IF NOT EXISTS) in the source code not uptodate
○ Shadow dataset is created with an outdated schema
○ Solution: Identify such tables from failure logs and configure the correct schema in shadow 

testing framework

Shadow Testing
Challenges
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Data Validation

Match row 
counts

Sample 10% 
of the rows 
from both 
datasets

Compute row 
checksums

Compare 
checksums
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● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

Data Validation
Challenges
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● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

● Stringified JSON
○ Custom UDF to create ordered json with precision loss while sampling rows

Data Validation
Challenges
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● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

● Stringified JSON
○ Custom UDF to create ordered json with precision loss while sampling rows

● Non-deterministic functions like row_number, rand, collect_list, collect_set, 
current_timestamp
○ Identify and exclude the columns from data validation

Data Validation
Challenges
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● Floating point arithmetics
○ Round to certain precision before taking checksum
○ Add tolerance of 1% in the tests
○ Threshold on maximum difference in a columns across all rows

● Stringified JSON
○ Custom UDF to create ordered json with precision loss while sampling rows

● Non-deterministic functions like row_number, rand, collect_list, collect_set, 
current_timestamp
○ Identify and exclude the columns from data validation

● Frequently updated datasets/Circular dependencies
○ Snapshot input datasets, run both Hive and SparkSQL payloads on snapshotted datasets

Data Validation
Challenges
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Bridging the Gap 
Between 
Hive & Spark
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Hive-Spark Disparity
Execution Failures

Problems Solutions

DDLs unsupported in SparkSQL:
● ALTER TABLE DROP PARTITION(datestr< ‘2024-

04-01’)
● ALTER TABLE CLUSTERED BY

HiveDriver support in SparkSQLRunner

Hive Built-in functions’ explicit registration required in 
Spark

Implicit Hive built-in discovery and registration added 
in Spark. Discovery order: Spark Built-in > Hive Built-in 
> UDFs

Group by on non-orderable data types (maps/structs) Ported  SPARK-34819

Out of memory errors ● Reduce target partition size
● Retry with increased executor memory

https://issues.apache.org/jira/browse/SPARK-34819
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Hive-Spark Disparity
Data validation Failures
Problem Hive Spark Solution

Boolean <> String Conversion

true => “TRUE”
false => “FALSE”
“” => false
“any_string” => true

true => “true”
false => “false”
“false” => false
“true” => true

Introduced behaviour on par 
with Hive in Spark backed by a 
config

Timestamp <> BigInt/Double 
Conversion/Coercion

cast(1714542982 as 
timestamp) => 1970-01-
20 20:15:42.982

cast(1714542982 as 
timestamp) => 2024-
05-01 11:26:22

Introduced behaviour on par 
with Hive in Spark backed by a 
config

Partition Schema vs Parquet 
Schema Preference

Partition schema > 
Parquet Schema

Parquet schema > 
Partition Schema

Identified and excluded these 
columns from data validation. 

Skip header in CSV tables
Respects 
“skip.header.line.count“ in 
table properties

-

Modified HadoopTableReader 
to respect 
“skip.header.line.count” while 
creating RDD

Difference in behaviour of 
built-in functions

regexp_like('x', null) => 
false

regexp_like('x', null) 
=>null

Replace with Hive built-in in 
translation



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● BroadcastNestedLoopJoin
○ NOT IN vs NOT EXISTS
○ Solution: Required query rewrites

● Merge ORC files
○ Merging ORC files is a metadata operation in Hive and hence very efficient
○ Not solved as ORC is deprecated at Uber in favor of Parquet

● Stats Autogather
○ Spark doesn’t compute and populate stats usable by Hive
○ Downstream Hive workflows are degraded because of non-availability of stats
○ Solution: Started computing and updating Hive usable stats in Spark

Hive-Spark Disparity
Performance Gotchas
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• Too many small files created by Spark causing namespace quota issues & increased 
HDFS directory listing latency

• Hive runs a conditional stage to merge files based on the following configs:
• SET hive.merge.sparkfiles = true
• SET hive.merge.smallfiles.avgsize = 128000000
• SET hive.merge.size.per.task = 128000000

Problem

27

Hive-Spark Disparity
Handling small output files

27
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Hive-Spark Disparity
Handling small output files

CreateDataSourceTableAsSelectCommand `default`.`table1`, ErrorIfExists, [col1, col2]

+- RebalancePartitions 200, false

+- Project [col1#20, col2#21]

+- SubqueryAlias spark_catalog.default.tmp

+- Relation default.tmp[col1#20,col2#21] parquet

CreateDataSourceTableAsSelectCommand `default`.`table1`, ErrorIfExists, [col1, col2]

+- Project [col1#20, col2#21]

+- SubqueryAlias spark_catalog.default.tmp

+- Relation default.tmp[col1#20,col2#21] parquet

● Added Rebalance in the logical 
plan of SparkSQL write queries by 
default before .

● Wrapped DataWritingCommand’s 
child plan with Rebalance

.

Solution Original Plan

Modified Plan
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Hive-Spark Disparity
Handling small output files

● Added Rebalance in the logical 
plan of SparkSQL write queries by 
default before .

● Wrapped DataWritingCommand’s 
child plan with Rebalance

● Tweaked AQE rules 
CoalesceShufflePartitions and 
OptimizeSkewInRebalancePartitio
ns to coalesce/split partitions 
based on the file target size for 
rebalance instead of 
AdvisoryPartitionSizeInBytes.

.

Mapper Task 1

P1 P2

Mapper Task 2

P1 P2

Mapper Task 3

P1 P2

Reducer 1
P1

Reducer 2
P1

Reducer 3

Skewed partition P1 split by OptimizeSkewInRebalancePartitions

Solution

P2
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• Hive and Spark use different hashing 
algorithms for bucketing

• Spark supports writing both HiveHash
and MurmurHash while writing to 
bucketed tables but ends up creating 
too many files (#tasks * #buckets) 
while using HiveHash

• Presto doesn’t recognize Spark 
buckets

Problem

30

Hive-Spark Disparity
Bucketed Tables

30

Task 1 Task 2 Task 3

B1 B2 B1 B2 B1 B2

Data distributed by 
MurmurHash 
among tasks 

Data redistributed 
by HiveHash 

among bucket files
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• Hive and Spark use different hashing 
algorithms for bucketing

• Spark supports writing both HiveHash
and MurmurHash while writing to 
bucketed tables but ends up creating 
too many files (#tasks * #buckets) 
while using HiveHash

• Presto doesn’t recognize Spark 
buckets

Problem Solution

31

• Decided to stick to HiveHash for 
bucketed tables as majority read use 
cases were in Presto.

• Added support for HiveHash in 
Rebalance to reduce the number of 
files.

• TBD: Extend HiveHash support to all 
shuffle stages for bucket table reads.

Hive-Spark Disparity
Bucketed Tables

31
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Results

Interactive 
Workloads  Migrated 

100%
ETL Workflows 

Migrated

80%
Monthly Queries 

Migrated

4M
Reduction in 

Runtime & Cos t

50%
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• JDBC/ODBC access for SparkSQL

• Fast fail on semantic issues for SQL in BI tools

• Optimize compression while shuffling data before write

• Atomic updates to prevent FileNotFoundException in case of concurrent write 
and reads

33

Future Work



Thank You!
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